数学科(理工农医类)考试内容为《课标》的必修和选修系列2的内容.结合重庆市的实际情况,具体要求如下:
1.集合
(1)集合的含义与表示
①了解集合的含义、元素与集合的关系(属于或不属于).
②能用集合的表示方法(如列举法、描述法)描述不同的具体问题.
(2)集合间的基本关系
①理解集合之间包含与相等的含义,能识别给定集合的子集.
②在具体情境中,了解全集与空集的含义.
(3)集合的基本运算
①理解两个集合的并集与交集的含义,会求两个简单的集合的并集与交集.
②理解在给定集合中一个子集的补集的含义,会求给定子集的补集.
③能使用韦恩(Venn)图表达集合的关系及运算.
2.函数概念与基本初等函数I(指数函数、对数函数、幂函数)
(1)函数
①了解函数的定义域、对应法则和值域,会求一些简单函数的定义域和值域.
②在实际情境中,会选择恰当的方法(图像法、列表法、解析法)表示函数.
③了解分段函数的含义,并能简单应用(函数分段不超过三段).
④理解函数的单调性、大值、小值及其几何意义;了解函数奇偶性的含义.
⑤会运用函数的图像分析函数的性质.
(2)指数函数
①理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.
②理解指数函数的概念及其单调性,知道指数函数图像通过的特殊点.
③了解指数函数模型的实际背景.
(3)对数函数
①理解对数的概念及其运算性质,会用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.
②理解对数函数的概念及其单调性,知道对数函数图像通过的特殊点.
③了解指数函数y=ax与对数函数y=logax互为反函数(,且).
(6)函数模型及其应用
了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的应用.
3.立体几何初步
(1)空间几何体
①认识柱、锥、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.
②能识别简单空间几何体(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图所表示的立体模型.
③了解球、柱体、锥体的表面积和体积的计算公式.
(2)点、直线、平面之间的位置关系
①理解空间直线、平面位置关系的定义,并了解如下的公理和定理:
●公理 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.
●公理 过不在同一条直线上的三点,有且只有一个平面.
●公理 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
●公理 平行于同一条直线的两条直线互相平行.
●定理 空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.
②以立体几何的上述定义、公理和定理为出发点,理解空间中线面平行、垂直的有关性质与判定定理.
理解以下判定定理:
●如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.
●如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.
●如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.
●如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.
理解并能够证明以下性质定理:
●如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.
●如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.
●垂直于同一个平面的两条直线平行.
●如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.
③能证明有关点、直线、平面之间的位置关系的简单命题.
4.平面解析几何初步
(1)直线与方程
①理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.
②能根据两条直线的斜率判定这两条直线是否平行或垂直.
③掌握确定直线位置的几何要素.掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.
④能用解方程组的方法求两条相交直线的交点坐标.
⑤掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线之间的距离.
(2)圆与方程
①掌握确定圆的几何要素,掌握圆的标准方程与一般方程.
②能根据直线和圆的方程判断直线与圆的位置关系;能根据两个圆的方程判断两圆的位置关系.
③能用直线和圆的方程解决一些简单的问题.
(3)空间直角坐标系
①了解空间直角坐标系,会用空间直角坐标表示点的位置.
②会简单应用空间两点间的距离公式.
5.算法初步
(1)算法的含义、程序框图
①了解算法的含义.
②理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.
(2)基本算法语句
了解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.
6.统计
(1)随机抽样
会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.
(2)用样本估计总体
①了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.
②理解样本数据标准差的意义和作用,会计算数据标准差.
③能从样本数据中提取基本的数字特征(如平均数、中位数、众数、极差和标准差),并给出合理的解释.
④会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.
⑤会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.
(3)变量的相关性
①会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系(正相关、负相关、不相关).
②能根据给出的线性回归方程系数公式建立一元线性回归方程.
7.概率
(1)事件与概率
①了解随机事件发生的不确定性和频率的稳定性.了解概率的意义,了解频率与概率的区别.
②了解两个互斥事件的概率加法公式.
(2)古典概型
①理解古典概型及其概率计算公式.
②会计算一些随机事件所含的基本事件数及事件发生的概率.
8.基本初等函数Ⅱ(三角函数)
(1)任意角的概念、弧度制
①了解任意角的概念.
②了解弧度制的概念,能进行弧度与角度的互化.
技校推荐
2019-09-17 10:28

考核目标与要求1.知识要求知识是指《普通高中课程方案(实验)》以下简称《课标》中所规定的必修课程、选修课程系列2中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能.对知识的要求由低到高依次是了解、理解、掌握三个层次.(1)了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程

2.能力要求能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力和应用能力.(1)空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.(2)抽象概括能力:能从具体的实例中舍去非本质属性,抽象出问题的本质,从给定的信息中概括出主要结论.(3)推理

6.统计(1)随机抽样会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.(2)用样本估计总体①了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.②理解样本数据标准差的意义和作用,会计算数据标准差.③能从样本数据中提取基本的数字特征(如平均数、中位数、众数、极差和标准差),并给出合理的解释.④会用样本的频率分布估计总体分布

7.概率(1)事件与概率①了解随机事件发生的不确定性和频率的稳定性.了解概率的意义,了解频率与概率的区别.②了解两个互斥事件的概率加法公式.(2)古典概型①理解古典概型及其概率计算公式.②会计算一些随机事件所含的基本事件数及事件发生的概率.

5.算法初步(1)算法的含义、程序框图①了解算法的含义.②理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.(2)基本算法语句了解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.

(2)基本算法语句了解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.

4.平面解析几何初步(1)直线与方程①理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.②能根据两条直线的斜率判定这两条直线是否平行或垂直.③掌握确定直线位置的几何要素.掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.④能用解方程组的方法求两条相交直线的交点坐标.⑤掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线之间的距离.(2)圆

1.知识要求知识是指《普通高中课程方案(实验)》以下简称《课标》中所规定的必修课程、选修课程系列2中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能.对知识的要求由低到高依次是了解、理解、掌握三个层次.(1)了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿

8.基本初等函数Ⅱ(三角函数)(1)任意角的概念、弧度制①了解任意角的概念.②了解弧度制的概念,能进行弧度与角度的互化.

考试范围与要求数学科(理工农医类)考试内容为《课标》的必修和选修系列2的内容.结合重庆市的实际情况,具体要求如下:1.集合(1)集合的含义与表示①了解集合的含义、元素与集合的关系(属于或不属于).②能用集合的表示方法(如列举法、描述法)描述不同的具体问题.(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集.②在具体情境中,了解全集与空集的含义.(3)集合的