数学科考试旨在测试学生对数学的基础知识、基本技能和基本的数学思想方法的掌握程度,以及逻辑思维能力、运算能力和解决简单实际应用问题的能力。考试内容的确定主要依据教育部颁布的《普通高等学校招生全国统一考试数学科考试大纲》,并结合了黑龙江省高等职业技术教育的实际,对知识的认知要求分为了解、理解和掌握三个层次。
各项考试内容和要求如下:
1.集合
(1)集合的含义与表示
①了解集合的含义、元素与集合的“属于”关系。
②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。
(2)集合间的基本关系
①理解集合之间包含与相等的含义,能识别给定集合的子集。
②在具体情境中,了解全集与空集的含义。
(3)集合的基本运算
①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。
②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
③能使用韦恩图(Venn)表达集合的关系及运算。
2.函数概念与基本初等函数I(指数函数、对数函数、幂函数)
(1)函数
①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。
③了解简单的分段函数,并能简单应用。
④理解函数的单调性、大值、小值及其几何意义;结合具体函数,了解函数奇偶性的含义。
⑤会运用函数图像理解和研究函数的性质。
(2)指数函数
①了解指数函数模型的实际背景。
②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。
③理解指数函数的概念,理解指数函数的单调性,掌握函数图像通过的特殊点。
(3)对数函数
①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。
②理解对数函数的概念;理解对数函数的单调性,掌握函数图像通过的特殊点。
③了解指数函数 与对数函数 互为反函数(a>0,a≠1)。
(4)幂函数
①了解幂函数的概念。
②结合函数 的图象,了解它们的变化情况。
3.立体几何初步
(1)空间几何体
①认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。
②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图。
③会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式。
④会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。
⑤了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
(2)点、直线、平面之间的位置关系
①理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理:
公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内。
公理2:过不在同一条直线上的三点,有且只有一个平面。
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
公理4:平行于同一条直线的两条直线互相平行。
定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。
②以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理。
理解以下判定定理:
如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。
如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行。
如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直。
如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直。
理解以下性质定理,并能够证明:
如果一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平行。
如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行。
垂直于同一个平面的两条直线平行。
如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直。
③能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题。
4.平面解析几何初步
(1)直线与方程
①在平面直角坐标系中,结合具体图形,确定直线位置的几何要素。
②理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式。
③能根据两条直线的斜率判定这两条直线平行或垂直。
④掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系。
⑤能用解方程组的方法求两直线的交点坐标。
⑥掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
(2)圆与方程
①掌握确定圆的几何要素,掌握圆的标准方程与一般方程。
②能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程,判断两圆的位置关系。
③能用直线和圆的方程解决一些简单的问题。
④初步了解用代数方法处理几何问题的思想。
8.基本初等函数II(三角函数)
(1)任意角的概念、弧度制
①了解任意角的概念。
②了解弧度制的概念,能进行弧度与角度的互化。
(2)三角函数
①理解任意角三角函数(正弦、余弦、正切)的定义。
②能利用单位圆中的三角函数线推导出 的正弦、余弦、正切的诱导公式,能画出 的图像,了解三角函数的周期性。
③理解正弦函数、余弦函数在区间 的性质(如单调性、大值和小值以及与x轴交点等),理解正切函数在区间的单调性。
④理解同角三角函数的基本关系式:
⑤了解函数 的物理意义;能画出 的图像,了解参数A、ω、j对函数图象变化的影响。
⑥了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题。
10.三角恒等变换
(1)和与差的三角函数公式
①会用向量的数量积推导出两角差的余弦公式。
②能利用两角差的余弦公式导出两角差的正弦、正切公式。
③能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系。
(2)简单的三角恒等变换
能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆)
11.解三角形
(1)正弦定理和余弦定理
掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
(2)应用
能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。
12.数列
(1)数列的概念和简单表示法
①了解数列的概念和几种简单的表示方法(列表、图像、通项公式)。
②了解数列是自变量为正整数的一类函数。
(2)等差数列、等比数列
①理解等差数列、等比数列的概念。
②掌握等差数列、等比数列的通项公式与前n项和公式。
③能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题。
④了解等差数列与一次函数、等比数列与指数函数的关系。
13.不等式
(1)不等关系
了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景。
(2)一元二次不等式
①会从实际情境中抽象出一元二次不等式模型。
②通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系。
③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序。
(3)二元一次不等式组与简单线性规划问题
①会从实际情境中抽象出二元一次不等式组。
②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。
③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。
(4)基本不等式:
①了解基本不等式的证明过程。
②会用基本不等式解决简单的大(小)值问题。
14.常用逻辑用语
(1)命题及其关系
①理解命题的概念。
②了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系。
③理解必要条件、充分条件与充要条件的意义。
(2)简单的逻辑联结词
了解逻辑联结词“或”、“且”、“非”的含义。

2.考试时间及内容考试时间考试内容x月xx日笔试待定语文、外语每科各90分钟x月xx日面试待定口语表能力、沟通能力、思维应变能力和相关专业(职业)常识等

Ⅱ.考试内容和要求根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通高中课程方案(实验)》和《普通高中语文课程标准(实验)》,确定语文科考试内容,制订本学科的考试内容。考核目标与要求语文考试要求考查考生识记、理解、分析综合、鉴赏评价、表达应用和探究六种能力,这六种能力表现为六个层级。A.识记:指识别和记忆,是基本的能力层级。.理解:指领会并能作简单的

第十一条、考试内容:数学、语文各150分;职业技能测试100分,共3科,均为笔试,满分400分。数学和语文参照《黑龙江生物科技职业学院2015年单独招生考试测试大纲》(在我院网站公布);职业技能测试从职业心理、职业素养、职业生涯规划三方面进行测试。

考试内容考试工作在省招办指导与监督下,采取笔试和综合素质测试(面试)相结合的方式进行,考试总分为400分。(一)笔试内容为数学、语文、外语(英语、俄语)三科,每科考试时间为90分钟,每科成绩满分为100分。(二)综合素质测试(面试)由学院组织专家组,按照专业从业要求对考生进行面试,主要考察学生的职业能力倾向性、专业学习适应性、心理素质等方面,每人限时5分钟,成绩满分为100分。

四考评方式及考试内容根据相关文件精神我院2021年单独招生考试采取网络远程面试面谈的形式进行考试考试成绩由两部分构成即面试面谈学业成绩总分400面试面谈主要侧重思想素质职业倾向职业心理测试人文社科通识自然科学通识和综合能力的考查共200分学业成绩200分学业成绩方面普通高中生依据全省高中学业水平考试成绩参考学生综合素质评价职业高中中专技工学校等高中阶段同等学力学生依据学业成绩和职业技能证书普通高中学生学业水平考试成绩由学生上网自行打印综合素质评价情况由学校提供职业高中中专学生成绩单由学校提供技工学校学生由本人提供职业技能证书学校提供成绩证明答案来源于20

2022年大兴安岭职业学院单独招生章程考评方式及考试内容

1.考试内容采取笔试和面试相结合的方式进行,总分600分。文化素质考试(笔试)内容分为语文、数学和外语(英语或俄语),每科150分,满分450分。职业技能测试(面试)满分150分。

考试内容及日程安排1.考试内容采取笔试和面试相结合的方式进行,总分600分。文化素质考试(笔试)内容分为语文、数学和外语(英语或俄语),每科150分,满分450分。职业技能测试(面试)满分150分。2.考试时间3月19日-3月20日(具体安排详见准考证)。

1.考试内容采取笔试和面试相结合的方式进行,总分600分。文化素质考试(笔试)内容分为语文、数学和外语(英语或俄语),每科150分,满分450分。职业技能测试(面试)满分150分。采取笔试和面试相结合的方式进行,总分600分。文化素质考试(笔试)内容分为语文、数学和外语(英语或俄语),每科150分,满分450分。职业技能测试(面试)满分150分。

(一)考试内容数学科考试旨在测试学生对数学的基础知识、基本技能和基本的数学思想方法的掌握程度,以及逻辑思维能力、运算能力和解决简单实际应用问题的能力。考试内容的确定主要依据教育部颁布的《普通高等学校招生全国统一考试数学科考试大纲》,并结合了黑龙江省高等职业技术教育的实际,对知识的认知要求分为了解、理解和掌握三个层次。各项考试内容和要求如下:1.集合(1)集合的含义与表示①了解集合的含义、